
Training Optimal Large Diffusion Language Models

Jinjie Ni1†, Qian Liu, Chao Du2, Longxu Dou2, Hang Yan4, Zili Wang3,
Tianyu Pang2, Michael Qizhe Shieh1

1National University of Singapore, 2Sea AI Lab, 3StepFun, 4Shanghai Qiji Zhifeng Co., Ltd.

We introduce Quokka, the first large-scale scaling law for diffusion language models (DLMs), encom-
passing both compute-constrained and data-constrained regimes, and studying the key modeling and
optimization designs. Quokka is a good friend of Chinchilla and provides wider scopes. We hope the
results would bring short-term practical guidance in DLMs training and long-term inspirations for the
whole AI community. We summarize some takeaways below:

• Compute-constrained scaling law. With fixed FLOPs 𝐶, the optimal parameters 𝑁opt∝𝐶0.5 and data size
𝐷opt∝𝐶0.5, scaling at the same pace; DLMs are 2–5× more data-hungry than autoregressive (AR) models
at the same 𝐶—favor smaller models and larger corpora (Figure 1). We provide a direct comparison with
Chinchilla scaling law coefficients in Table 1 and their practical optimal allocation comparisons in Table 2.

• Data-constrained scaling law. Validation loss is U-shaped in epochs 𝑒; the onset of overfitting scales
roughly as 𝑒opt∝𝑈0.39

𝐷 /𝑁0.55, where 𝑁 is the model size and 𝑈𝐷 is the unique data size; e.g., a 10B model
on 1T unique tokens tolerates ∼1,100 epochs before degradation. We provide practical allocation guidance
in Table 3.

• Joint allocation under data constraints. For a larger unique data size 𝑈𝐷, the optimal parameter-epoch
allocation usesmodestly larger 𝑁 andmore epochs–both 𝑁opt and 𝑒opt increase with 𝑈𝐷. We provide practical
allocation guidance in Table 4.

• Masked outperforms uniform diffusion at scale. Absorbing-mask transitions consistently outperform
uniform ones on pretrain loss and downstream metrics (§5.1).

• Schedules and curricula. A linear 𝛼𝑡 schedule is strongest in most cases and most stable; poly2 performs
better on some benchmarks; an easy→hard noise curriculum (clean-to-noisy 𝑡 sampling) accelerates early
learning and yields small end-of-training gains (§5.2).

• Losses. MaskGIT loss (no importance sampling) converges faster initially, but the principled diffusion
ELBO attains better final performance (§5.3).

• Hyperparameters transfer. Batch-size and learning-rate laws from AR models can be carried over for
DLM training (§5.4).

• Weight decay. Little benefit at one epoch, but useful in long multi-epoch runs and for controlling parameter
norms (stability in bf16); keep WD when repeating data heavily (§5.5).

1. Introduction

2025 marks the first year of diffusion language models (DLMs) scaling. Based on the great efforts
that laid the theoretical foundation for DLMs (Lou et al., 2023; Ou et al., 2024; Sahoo et al., 2024;
Shi et al., 2024), Nie et al. (2025) successfully trained the first large diffusion language model from
scratch, competitive to state-of-the-art open-source autoregressive (AR) models (Dubey et al., 2024).
Meanwhile, several commercial DLMs emerged, exhibiting superior coding and math performance
with remarkably low generation latency at the same time (Google DeepMind, 2025; Khanna et al.,

†Correspondence to: Jinjie Ni <jinjieni@nus.edu.sg>
This is an initial draft that will be further improved.

Training Optimal Large Diffusion Language Models

1017 1019 1021 1023 1025

FLOPs
10M

100M

1.0B

10B

100B

1T
Pa

ra
m

et
er

s

Optimal: 15B model
 1.2T tokens

 LLaDA: 8B model
 2.3T tokens

Scaling Laws
Chinchilla Approach 1 | AR
Chinchilla Approach 2 | AR
Quokka Approach 1 | Diffusion
Quokka Approach 2 | Diffusion

Opensource Models
Llama 2 | 7B, 34B, 70B | AR
Llama 3 | 8B, 70B, 405B| AR
Qwen 2 | 1.5B, 7B, 72B | AR
Qwen 3 | 1.7B, 8B, 32B | AR
LLaDA | 8B | Diffusion

Figure 1 | Overlaid predictions from Chinchilla and Quokka (compute-constrained). We overlay
the predictions from our approach 1 and 2, along with those from (Hoffmann et al., 2022). Though
scaling at the same pace, DLMs are 2–5×more data-hungry than AR models at the same FLOPs—favor
smaller models and larger corpora. We mark the position of LLaDA (Nie et al., 2025) in the same
space, finding that it’s severely over-trained with 2× smaller models and 2× more corpora against the
Quokka efficient frontier. Meanwhile, wo show the positions of opensource models, finding that most
models are over-trained compared with the Chinchilla efficient frontier, except some models from the
Llama family. Discussions on the reason are detailed in §7.

2025; Song et al., 2025). Thereafter, Ni and team (2025) showed that DLMs exhibit much better
data learning potential than AR models when data is the bottleneck, a.k.a. "intelligence crossovers",
demonstrating a core advantage over AR models under token crisis (Muennighoff et al., 2023; Xue
et al., 2023).

DLMs exhibit several modeling advantages over AR models. Their bidirectional attention and
diffusion objective enable any-order modeling, allowing data to be modeled in arbitrary directions
during both training and inference. This property is particularly beneficial for tasks requiring non-
causal dependencies and back-and-forth reasoning, such as coding (Wu et al., 2025a; Xie et al., 2025),
mathematics (Google DeepMind, 2025), report generation (Han et al., 2025), etc. DLMs’ bidirectional
attention natively support on-the-fly context modification as new content is generated, a desirable
feature in these tasks. Multi-token generation is also natively supported by DLMs, providing the
foundation for their bleeding fast decoding. Moreover, DLMs spend more parallelable FLOPs at both
the inference and training time, leading to their superior data learning capability and potentially
stronger reasoning capabilities.

However, the knowledge on how to train large DLMs from scratch is still near blank. Existing
studies are largely heuristic or simply extrapolate conclusions from AR models (Nie et al., 2025;
Ye et al., 2025). In practice, two scaling laws are of primary interest: (1) the compute-constrained
(or compute-optimal) scaling law (Hoffmann et al., 2022), where compute is fixed while model
and dataset size are unconstrained; and (2) the data-constrained scaling law (Muennighoff et al.,
2023), where dataset size is fixed while model size and compute are unbounded. Both regimes raise
key questions about scaling behavior under these restrictions and, more critically, how to optimally

2

Training Optimal Large Diffusion Language Models

allocate the remaining degrees of freedom. Moreover, beyond the classic trade-offs among data,
parameters, and compute, additional modeling and optimization choices can also substantially affect
the end-of-training performance of language models.

In this work, we will empirically investigate the dependence of language modeling loss and
downstream evaluations on all of these factors. We introduce Quokka, the first large-scale scaling
law for DLMs, covering both the compute-constrained and data-constrained regimes, and studying
the key modeling and optimization designs. Specifically, the key contributions we made include:

Compute-constrained scaling laws for DLMs. Under compute-constraint, we revisit the question:
Given a fixed FLOPs budget, how should one trade-off model size and the number of training
tokens? To answer this question, we model the final pre-training loss as a function of the number of
model parameters 𝑁, and the number of training tokens, 𝐷. Since the computational budget 𝐶 is a
deterministic function 𝐹𝐿𝑂𝑃𝑠(𝑁, 𝐷) of the number of these two variables, our objective is to minimize
𝐿 subject to the constraint 𝐹𝐿𝑂𝑃𝑠(𝑁, 𝐷) = 𝐶:

𝑁opt(𝐶), 𝐷opt(𝐶) = argmin
𝑁,𝐷 s.t. FLOPs(𝑁,𝐷)=𝐶

𝐿(𝑁, 𝐷). (1)

The functions 𝑁opt(𝐶) and 𝐷opt(𝐶) characterize the optimal allocation of a compute budget 𝐶. We
estimate these functions empirically using results from a large set of models, spanning parameter
counts from under 7M to over 11B and trained on datasets from 1B to over 260B tokens. Across
two independent approaches, we consistently find that 𝑁 and 𝐷 should scale proportionally with 𝐶:
doubling 𝑁 requires doubling 𝐷, mirroring the scaling behavior observed in AR models. Meanwhile,
both approaches indicate that DLMs require roughly 2–5× more data than AR models under the same
FLOPs budget (Figure 1).

Data-constrained scaling laws for DLMs. In the data-constrained regime—which represents the
long-term practical bottleneck—we study the interactions among training performance, unique dataset
size, model parameters, and data repetition. We focus on two central questions: (1) Given a fixed
model size, a limited amount of unique data, and effectively unlimited compute, how many epochs
can the model be trained before performance degradation occurs? (2) Given a fixed unique data
budget and unlimited compute, what is the optimal allocation of parameters and data repetitions?

To address these questions, we model the U-shaped validation loss 𝐿(𝑁,𝑈𝐷, 𝑒) as a function of
parameters 𝑁, unique tokens 𝑈𝐷, and training epochs (or repetitions) 𝑒, using results from 21,345
training runs. For question (1), with 𝑁 and 𝑈𝐷 fixed, we seek the maximum number of epochs that
minimizes validation loss along the U-curve. FLOPs are excluded from this formulation, as compute is
assumed unconstrained:

𝑒opt(𝑁,𝑈𝐷) = argmin
𝑒 s.t. 𝑁=𝑁,𝑈𝐷=𝑈𝐷

𝐿(𝑒). (2)

For question (2), with 𝑈𝐷 as the only constraint, we aim to determine the optimal allocation of
model size 𝑁 and epochs 𝑒. Since performance under data constraints is non-monotonic w.r.t. both 𝑁

and 𝑒, the loss surface admits at least one minimum. We therefore fit the joint allocation of 𝑁 and 𝑒

that minimizes 𝐿:

3

Training Optimal Large Diffusion Language Models

𝑒opt(𝑈𝐷), 𝑁opt(𝑈𝐷) = argmin
𝑒,𝑁 s.t. 𝑈𝐷=𝑈𝐷

𝐿(𝑒, 𝑁). (3)

In §4.2, we plot the predicted loss contour 𝐿(𝑁,𝑈𝐷, 𝑒), and gave practical suggestions based on
the results of Equation (2) and (3). E.g., we can train a 10B model for maximally 1098 epochs on 1T
data before seeing a rise in the loss.

Key modeling and optimization designs. Beyond the interplays between parameters, dataset
size, data repetition, and compute, we also ablate several critical modeling and optimization choices
for DLMs. These include transition kernels (§5.1), diffusion schedules (§5.2), curriculum strategies
(§5.2), loss formulation (§5.3), and optimization hyperparameters such as learning rate (§5.4), batch
size (§5.4), and weight decay (§5.5). Our results show that while DLMs exhibit markedly different
scaling coefficients from AR models, the established AR scaling laws for learning rate and batch size
transfer directly.

2. Preliminaries

2.1. Chinchilla Scaling Law and Its Data-Constrained Version for AR Models

Chinchilla Scaling Law. Hoffmann et al. (2022) studies compute-constrained (or compute-optimal)
AR pre-training by triangulating evidence from three complementary approaches: (i) Fixed-Parameters:
vary training tokens 𝐷 while holding model size 𝑁 fixed; (ii) Fixed-FLOPs (IsoFLOP): keep total
training compute 𝐶 fixed while co-varying 𝑁 and 𝐷; (iii) Parametric Fit: fit a two-factor loss surface
𝐿(𝑁, 𝐷) and derive the compute-optimal allocation. Its core parametric law is

𝐿(𝑁, 𝐷) ≜ 𝐸 + 𝐴

𝑁𝛼
+ 𝐵

𝐷𝛽
(4)

with compute 𝐶≈6𝑁𝐷. Minimizing (4) at fixed 𝐶 yields the allocation

𝑁opt(𝐶) = 𝐺

(
𝐶

6

)𝑎
, 𝐷opt(𝐶) = 𝐺−1

(
𝐶

6

)𝑏
, (5)

where 𝐺 =

(
𝛼𝐴

𝛽𝐵

) 1
𝛼+𝛽

, 𝑎 =
𝛽

𝛼 + 𝛽
, and 𝑏 =

𝛼

𝛼 + 𝛽
. (6)

In practice, 𝑎 ≈ 𝑏, so compute-optimal training scales 𝑁 and 𝐷 in near lockstep.

A data-constrained generalization. When unique data is limited, repeated tokens and excess
parameters have diminishing marginal value. Muennighoff et al. (2023) capture this by replacing the
raw (𝑁, 𝐷) in Equation (4) by their effective counterparts (𝑁 ′, 𝐷′):

𝐿(𝑁, 𝐷) ≜ 𝐸 + 𝐴

𝑁 ′𝛼 + 𝐵

𝐷′𝛽 (7)

where 𝐷′ discounts repetitions and 𝑁 ′ discounts parameters beyond those needed for the available
unique data. Let 𝑈𝐷 = min{𝐷, 𝐷𝐶} be the unique tokens used under a data budget 𝐷𝐶, and let
𝑅𝐷 = 𝐷

𝑈𝐷
− 1 be the number of repeats (epochs beyond the first). Symmetrically, define 𝑈𝑁 as the

parameters compute-optimal for 𝑈𝐷 and 𝑅𝑁 = 𝑁
𝑈𝑁

− 1. Then use simple exponential “half-life” forms:

𝐷′ = 𝑈𝐷 + 𝑈𝐷 𝑅
∗
𝐷

(
1 − 𝑒−𝑅𝐷/𝑅

∗
𝐷

)
, 𝑁 ′ = 𝑈𝑁 + 𝑈𝑁 𝑅

∗
𝑁

(
1 − 𝑒−𝑅𝑁/𝑅

∗
𝑁

)
. (8)

4

Training Optimal Large Diffusion Language Models

Here 𝑅∗𝐷 and 𝑅∗𝑁 are scale parameters: at 𝑅𝐷=𝑅∗𝐷 (resp. 𝑅𝑁 =𝑅∗𝑁), each repeated token (resp. excess
parameter) is worth roughly (1 − 1/𝑒) of a fresh one. A flaw of this formulation is that it assumes
validation loss is non-increasing, which is not true in practice.

2.2. Masked Diffusion Language Models

Why masked diffusion? DLMs adopt a noising–denoising framework over sequences. Among their
variants, masked diffusion—also known as absorbing discrete diffusion, which relies on an absorbing
transition kernel—has emerged as the most effective formulation (Amin et al., 2025). It preserves
discreteness, supports any-order modeling, enables exact position-wise factorization during corruption,
and allows flexible likelihood estimation and natively support multi-token prediction. These properties
make masked diffusion a strong competitor to AR modeling while retaining many of its practical
advantages. Moreover, Ni and team (2025) demonstrate that masked DLMs consistently outperform
AR models under data-constrained regimes through more repetitions on data. This advantage is likely
rooted in DLMs’ any-order modeling, high compute-parameter ratio, and inherent data augmentation.

Forward (corruption) process. Let 𝐾 be the vocabulary size, 𝐿 the sequence length, and 𝑚 the mask
token. Given a clean sequence 𝑥0 ∈ {0, . . . , 𝐾−1}𝐿, define a monotone diffusion schedule 𝛼𝑡 ∈ [0, 1]
with 𝛼0 = 1 and 𝛼1 = 0, where 𝛼𝑡 is the probability that a token is clean (unmasked) at noise level
𝑡 ∈ [0, 1]. The forward process independently masks tokens:

𝑞𝑡 |0(𝑥𝑡 | 𝑥0) =
𝐿∏
𝑖=1

𝑞𝑡 |0
(
𝑥
(𝑖)
𝑡 | 𝑥 (𝑖)0

)
, 𝑞𝑡 |0

(
𝑥
(𝑖)
𝑡 | 𝑥 (𝑖)0

)
=

{
𝛼𝑡, 𝑥

(𝑖)
𝑡 = 𝑥

(𝑖)
0 ,

1 − 𝛼𝑡, 𝑥
(𝑖)
𝑡 = 𝑚 ,

so that the expected unmasked fraction at level 𝑡 equals 𝛼𝑡.

Reverse (denoising) process. Starting from the fully masked sequence 𝑥1 and a decreasing schedule
1 = 𝑡0 > 𝑡1 > · · · > 𝑡𝑁 = 0, the reverse dynamics from 𝑡 to 𝑠 < 𝑡 acts independently across positions:

𝑞𝑠 |𝑡
(
𝑥
(𝑖)
𝑠 | 𝑥𝑡

)
=



1, 𝑥
(𝑖)
𝑡 ≠ 𝑚, 𝑥

(𝑖)
𝑠 = 𝑥

(𝑖)
𝑡 ,

1 − 𝛼𝑠

1 − 𝛼𝑡
, 𝑥

(𝑖)
𝑡 = 𝑚, 𝑥

(𝑖)
𝑠 = 𝑚,

𝛼𝑠 − 𝛼𝑡

1 − 𝛼𝑡
𝑞0 |𝑡

(
𝑥
(𝑖)
𝑠 | 𝑥𝑡

)
, 𝑥

(𝑖)
𝑡 = 𝑚, 𝑥

(𝑖)
𝑠 ∈ V \ {𝑚},

0, otherwise.

i.e., already-revealed tokens stay fixed; masked tokens either remain masked with probability 1−𝛼𝑠
1−𝛼𝑡 or

are revealed by sampling from a data-prediction distribution 𝑞0 |𝑡 (· | 𝑥𝑡) with probability 𝛼𝑠−𝛼𝑡
1−𝛼𝑡 . A key

time-agnostic property (Ou et al., 2024) of masked diffusion is that

𝑞0 |𝑡
(
𝑥
(𝑖)
0 | 𝑥𝑡

)
= 𝑝data

(
𝑥
(𝑖)
0

��� 𝑥UM𝑡)
,

the conditional distribution of the clean token depends only on the unmasked context 𝑥UM𝑡 ; it does not
depend on 𝑡 beyond which tokens are visible. This allows the denoiser to be parameterized without
an explicit time embedding.

5

Training Optimal Large Diffusion Language Models

Learning objective. Let 𝑝𝜃
(
𝑥
(𝑖)
0 | 𝑥𝑡

)
approximate 𝑝data

(
𝑥
(𝑖)
0 | 𝑥UM𝑡

)
. Masked diffusion maximizes a

variational bound on log 𝑝𝜃(𝑥0), which can be written as minimizing

L =

∫ 1

0
𝑤(𝑡;𝛼) 𝔼𝑞𝑡 |0 (𝑥𝑡 |𝑥0)


∑︁

𝑖: 𝑥 (𝑖)𝑡 =𝑚

− log 𝑝𝜃
(
𝑥
(𝑖)
0 | 𝑥𝑡

) d𝑡, (9)

where the importance weight 𝑤(𝑡;𝛼) depends only on the schedule and, up to a constant factor, takes
the natural form

𝑤(𝑡;𝛼) =
𝛼′𝑡

𝛼𝑡 − 1
.

Intuitively, 𝑤(𝑡;𝛼) compensates for the varying expected number of masked positions across noise
levels. For the widely used linear schedule 𝛼𝑡 = 1 − 𝑡, this reduces to the familiar integrand weight
𝑤(𝑡) = 1/𝑡.

3. Compute-Constrained Scaling Law for Diffusion Language Models

Constrained compute in model training is inevitable—every player in the AGI race faces limited
compute budgets while having effectively unlimited model variants to explore. We therefore ask:
Given a fixed FLOPs budget, how should one optimally trade off model size against the number of training
tokens? Following Hoffmann et al. (2022), we model the DLM training loss, model size, and dataset
size using power-law relationships under the limited-compute, infinite-data regime, where each
model is trained for a single epoch.

We present two approaches to address this question. First, we conduct extensive IsoFLOPs runs
across a range of compute budgets, varying model sizes up to 11B parameters and dataset sizes up to
260B tokens. This allows us to trace the efficient frontier for compute-optimal allocation between
model size and dataset size. Second, we fit the power-law loss function to the final training losses
obtained from these IsoFLOPs runs. Both approaches converge on the same conclusion: model size
and dataset size should scale proportionally with training compute, i.e., doubling 𝑁 requires doubling
𝐷, consistent with findings for AR models. However, both approaches also suggest a substantially
higher fixed data allocation—roughly 2–5× that of AR models—for a given FLOPs budget, implying
that DLMs are more data-hungry when trained for only a single epoch. Note that Ni and team (2025)
shows that DLMs achieve higher data potential under multi-epoch training.

3.1. Approach 1: IsoFLOPs Profiles

In the first approach, we vary model size across nine fixed training FLOPs budgets, ranging from
3 × 1018 to 1 × 1021 FLOPs, and record the final training loss at each point. This directly answers the
question: for a given FLOPs budget, what is the compute-optimal parameter count?

For each FLOPs budget, we plot the smoothed final loss against parameter count in Figure 2 (left).
In all cases, we train a sufficiently diverse set of model sizes to ensure the loss curve exhibits a clear
minimum. We fit a parabola to each IsoFLOPs curve to estimate the parameter count at which the
minimum loss occurs (Figure 2, left). We then fit power laws relating compute to the loss-optimal
model size and dataset size (Figure 2, center and right), both of which show near-perfect linearity
in log-log space. The resulting scaling exponents are 𝑁opt ∝ 𝐶𝑎 and 𝐷opt ∝ 𝐶𝑏, with 𝑎 = 0.51 and
𝑏 = 0.49. The fitted formulas are 𝑁 ≈ 0.0216𝐶0.514 and 𝐷 ≈ 7.7𝐶0.486, as summarized in Table 1.

An instructive head-to-head comparison is that the only dense diffusion language model trained
from scratch, LLaDA (Nie et al., 2025), which consumed 1.1 × 1023 FLOPs, adopted a suboptimal

6

Training Optimal Large Diffusion Language Models

Figure 2 | IsoFLOP curves illustrating the final training loss for a fixed compute budget. For each
curve, we vary the model size and adjust the number of training tokens to maintain constant total
training FLOPs. The left panel reveals a distinct performance valley, indicating an optimal trade-off
between model size and data for a given compute budget. Leveraging the minima of these curves,
we extrapolate the scaling law for the optimal number of parameters and training tokens to larger
compute regimes (center and right). The green point highlights our projection for an optimally-scaled
model trained with the LLaDA compute budget.

parameter–data allocation. As shown in Figure 2 (center, right), the compute-optimal allocation at
this budget would be a 15B-parameter model trained on 1.2T tokens, rather than the 8B model with
2.3T tokens they used. We provide a direct comparison between AR models and DLMs under compute
constraints in §3.3.

3.2. Approach 2: Fitting a Parametric Loss Function

The second approach models final training loss as a parametric function of model size 𝑁 (parameter
count) and dataset size 𝐷. Following Hoffmann et al. (2022), we adopt a functional form based on
classical risk decomposition, expressing the loss 𝐿(𝑁, 𝐷) as:

𝐿(𝑁, 𝐷) ≜ 𝐸 + 𝐴

𝑁𝛼
+ 𝐵

𝐷𝛽
(10)

This formulation decomposes total loss into three components:

1. Irreducible Error (𝐸): The entropy of the true data-generating process, representing the
theoretical lower bound on loss, unattainable by any model.

2. Model Error (𝐴
𝑁𝛼): Error due to limited model capacity. Even with infinite data, a finite

transformer cannot perfectly capture the true distribution. This term decays as model size 𝑁
increases.

3. Training Error (𝐵
𝐷𝛽
): Error from finite dataset size 𝐷. It captures the gap between a finitely

trained model and its fully converged counterpart, diminishing as 𝐷 grows.

To estimate the five free parameters (𝐴, 𝐵, 𝐸, 𝛼, 𝛽), we regress the functional form against our
experimental results. Concretely, we minimize the Huber loss (Huber, 1992) between predicted and
observed log-losses using the L-BFGS algorithm (Nocedal, 1980):

min
𝐴,𝐵,𝐸,𝛼,𝛽

∑︁
Runs 𝑖

Huber𝛿
(
log 𝐿(𝑁𝑖, 𝐷𝑖) − log 𝐿obs𝑖

)
, (11)

7

Training Optimal Large Diffusion Language Models

Figure 3 | Parametric fit of the loss function 𝐿(𝑁, 𝐷). Left: Iso-loss contours of our fitted model.
The blue line indicates the efficient frontier—the trajectory of minimal compute (FLOPs) required to
achieve a given loss value, which is linear in log-log space. Right: Several isoFLOPs cross-sections of
the loss surface, corresponding to the dashed lines in the left panel. The real data points are also
plotted for a comparison.

where 𝐿obs
𝑖

denotes the observed loss for run 𝑖. Log-loss is standard for fitting power-law relationships.
We set 𝛿 = 10−3 to enhance robustness to outliers, improving predictive accuracy on held-out data.
To avoid convergence to poor local minima, we perform a grid search over initial parameter values
and retain the fit with the lowest objective value.

A key application of this parametric model is to derive the compute-optimal allocation of a fixed
budget 𝐶 between model size and dataset size. Assuming compute cost scales as FLOPs(𝑁, 𝐷) ≈
6𝑁𝐷 = 𝐶, the optimal 𝑁opt and 𝐷opt are obtained by minimizing Equation (10) under this constraint.
The solution balances model error against training error, yielding a closed-form expression in which
both 𝑁opt and 𝐷opt scale as power laws of 𝐶:

𝑁opt(𝐶) = 𝐺

(
𝐶

6

)𝑎
, 𝐷opt(𝐶) = 𝐺−1

(
𝐶

6

)𝑏
, (12)

where the scaling exponents 𝑎 and 𝑏, and the constant 𝐺, are functions of the fitted parameters from
our loss model:

𝐺 =

(
𝛼𝐴

𝛽𝐵

) 1
𝛼+𝛽

, 𝑎 =
𝛽

𝛼 + 𝛽
, and 𝑏 =

𝛼

𝛼 + 𝛽
.

By construction, 𝑎+ 𝑏 = 1. The contours of the fitted loss function 𝐿 and the corresponding efficient
frontier are shown in Figure 3 (left); Figure 3 (right) shows several isoFLOPs cross-sections of the loss
surface, corresponding to the dashed lines in the left panel, with the real data points for a comparison.
Our empirical fit, summarized in Table 1, yields exponents 𝑎 ≈ 0.50 and 𝑏 ≈ 0.50, suggesting that
under a fixed compute budget, training data scales at the same pace of parameters. This outcome is
fully consistent with approach 1, reinforcing the robustness of the conclusion. From approach 2, the
fitted form of Equation (10) is:

𝐿(𝑁, 𝐷) ≈ 2.413 + 798.6
𝑁0.379 + 4604.9

𝐷0.378 (13)

8

Training Optimal Large Diffusion Language Models

Table 1 | A comparison of scaling law coefficients between our model (Quokka) and Chinchilla.
Both DLMs and AR models exhibit similar scaling exponents, implying that the optimal model size
and number of training tokens scale at a similar rate. However, for a compute-optimal configuration,
our findings suggest allocating 2.2 − 6.7× more training data with a correspondingly smaller model
than prescribed by Chinchilla. We also observe that DLMs have a higher irreducible loss.

Approach E a b 𝑘𝑁 𝑘𝐷

Chinchilla Approach 1 - 0.50 0.50 0.09 1.88
Chinchilla Approach 2 - 0.49 0.51 0.15 1.15
Chinchilla Approach 3 1.69 0.46 0.54 0.60 0.28
Quokka Approach 1 - 0.51 0.49 0.02 7.70
Quokka Approach 2 2.41 0.50 0.50 0.04 4.10

3.3. Optimal Model Scaling

As detailed above, the optimal parameter count 𝑁opt and token budget 𝐷opt follow a power-law
relationship with compute 𝐶: 𝑁opt ∝ 𝐶𝑎, 𝐷opt ∝ 𝐶𝑏. Introducing multipliers 𝑘𝑁 and 𝑘𝐷, we write
𝑁opt = 𝑘𝑁𝐶

𝑎 and 𝐷opt = 𝑘𝐷𝐶
𝑏.

Table 1 summarizes the fitted coefficients and compares them directly with Chinchilla scaling.
Despite methodological differences, both approaches of Quokka yield consistent exponents 𝑎 and
𝑏, suggesting that model size and training data should scale nearly proportionally with compute.
However, while the exponents align, the multipliers 𝑘𝑁 and 𝑘𝐷 differ, and these dominate the actual
allocation under fixed 𝐶 when 𝑎 ≈ 𝑏. Since 𝐶 = 6𝑁𝐷, the constraint 𝑘𝑁 × 𝑘𝐷 = 1

6 holds.

Empirically, Quokka exhibits a 2.2–6.7× larger 𝑘𝐷 than Chinchilla, implying substantially more
data and correspondingly fewer parameters are optimal at fixed compute. In practice, for very large
FLOPs budgets, even small exponent differences (e.g., 0.51 vs. 0.50) become increasingly important,
eventually outweighing multiplier effects (Table 2).

DLMs also exhibit a higher irreducible loss than AR models (2.41 vs. 1.69). This is intuitive:
beyond the intrinsic noise in real-world data, diffusion LMs optimize a variational upper bound (ELBO)
on the negative log-likelihood. The forward noising process, discretization, and parameterization
introduce a non-vanishing variational gap, so even at infinite scale the extrapolated irreducible loss
under the diffusion objective remains higher than that of AR models trained directly on NLL.

Note that Hoffmann et al. (2022) employed three fitting methods. We merge their approaches
1 and 2 into Quokka approach 1, as they are effectively equivalent. Their approach 3, in contrast,
reported negative curvature in the 𝑁 → 𝑁opt frontier, yielding lower 𝑁opt estimates. Accordingly, for
coefficients other than the irreducible loss 𝐸, we compare against Chinchilla approaches 1 and 2. The
irreducible loss is reported only under their approach 3, i.e., the parametric fit.

Table 2 reports the estimated FLOPs and token counts required for models of different sizes to lie
on the compute-optimal frontier, alongside Chinchilla’s allocations. Across scales, DLMs consistently
allocate 2–5× more tokens than AR models. This follows naturally: under compute constraints, data
is not the bottleneck, so each example is used once. Unlike AR models, DLMs require corruption of
inputs during training, effectively demanding more data to represent the same amount of information.
As a result, DLMs favor comparatively smaller models trained on substantially larger corpora. These
findings offer practical guidance for pre-training DLMs in compute-limited regimes.

9

Training Optimal Large Diffusion Language Models

Table 2 | Optimal FLOPs and training tokens allocation for compute-optimal models. For a range
of model sizes, we plot the estimated training FLOPs and number of tokens required to achieve
compute optimal, as predicted by Approach 1, to provide a practical guidance for DLMs training. The
estimates for both approach 1 and 2 are close, presented in Table 5. We also included the numbers
predicted by Chinchilla scaling law to perform a head-to-head comparison.

Quokka Chinchilla

Parameters FLOPs Tokens FLOPs Tokens

400 M 9.46e+19 39.3 B 1.92e+19 8.0 B
1 B 5.62e+20 93.5 B 1.21e+20 20.2 B

10 B 4.96e+22 825.2 B 1.23e+22 205.1 B
67 B 2.01e+24 5.0 T 5.76e+23 1.5 T

175 B 1.30e+25 12.4 T 3.85e+24 3.7 T
280 B 3.24e+25 19.3 T 9.90e+24 5.9 T
520 B 1.08e+26 34.6 T 3.43e+25 11.0 T

1 T 3.86e+26 64.2 T 1.27e+26 21.2 T
10 T 3.41e+28 566.4 T 1.30e+28 216.2 T

4. Data-Constrained Scaling Law for Diffusion Language Models

In the long run, compute will not be the bottleneck in the pursuit of greater intelligence. According to
Common Crawl’s official statistics (Common Crawl, 2025), web data grows roughly linearly, whereas
compute for training AI models grows exponentially (Sevilla and Roldán, 2024). Since compute can
be scaled both by increasing chip counts and by extending training time, it is effectively unbounded.
By contrast, data constitutes the true limiting factor. In particular, certain domains face acute scarcity,
including non-English language data, high-quality code, mathematical text, medical data, etc.

Under data constraints, a practical approach to improving model performance is repeated data
usage, such as multi-epoch training. Our primary goal is to quantify the effect of multi-epoch training
on performance and its relationship with unique dataset size and model parameter allocation. We
address this by modeling the loss landscape with respect to training epochs 𝑒, model parameters 𝑁,
and unique dataset size 𝑈. Beyond this, we focus on two key questions:

• Given a fixed model size, a fixed unique-data budget, and unbounded compute, how many epochs
can we train before performance degrades?

• Given a fixed unique-data budget and unbounded compute, can we predict the optimal allocation
between model size and number of training epochs?

4.1. An Effort in Modeling the Validation Loss with Overfitting

Modeling validation loss is substantially more challenging than modeling pre-training loss. Muen-
nighoff et al. (2023) proposed Equation (7) to capture validation loss, introducing the notion of
diminishing "effective model size" and "effective data size," which reflects the intuition that repeated
exposure to the same data yields diminishing performance gains. However, this formulation has a
critical flaw: it produces a monotonically non-increasing validation loss, which contradicts reality.
In practice, repeated training on the same data inevitably leads to increased validation loss due to
overfitting, a direct consequence of the bias–variance tradeoff.

To better characterize the validation loss landscape, we trained a suite of DLMs across varying

10

Training Optimal Large Diffusion Language Models

2 9 43 208 1000
Epochs

5

6

7

8

9

Fin
al

 V
al

 L
os

s

10M Unique Tokens
14M
34M
65M
145M
301M
637M
1358M
2792M

2 9 44 211 1000
Epochs

5

6

7

8

Fin
al

 V
al

 L
os

s

17M Unique Tokens
14M
34M
65M
145M
301M
637M
1358M
2792M

2 9 44 210 1000
Epochs

5

6

7

Fin
al

 V
al

 L
os

s

29M Unique Tokens
34M
65M
124M
217M
417M
856M
1523M
2792M

2 9 44 211 1000
Epochs

4

5

6

7

Fin
al

 V
al

 L
os

s

49M Unique Tokens
81M
145M
217M
417M
637M
1086M
1693M
2792M

2 9 45 211 1000
Epochs

4.0

4.5

5.0

5.5

6.0
Fin

al
 V

al
 L

os
s

82M Unique Tokens
166M
251M
417M
567M
856M
1353M
1900M
2792M

2 9 45 211 1000
Epochs

3.5

4.0

4.5

5.0

5.5

Fin
al

 V
al

 L
os

s

139M Unique Tokens
417M
567M
700M
971M
1353M
1693M
2165M
2792M

Figure 4 | Final-step validation losses for models of varying sizes trained with different unique
data budgets and epochs. We consistently observe a U-shaped relationship between model size and
final validation loss for a fixed data budget, with a minority of runs exhibiting double descent. Larger
model sizes tend to accelerate the onset of overfitting (the right side of the "U"), while increasing the
number of unique tokens delays it. The minimum achievable loss improves as the amount of unique
data increases. These empirical findings provide the motivation for our data-constrained scaling law.

parameter scales, unique data sizes, and epochs—amounting to 24,000 runs (Figure 4). The results
clearly demonstrate the onset of overfitting when training on limited data for extended periods. At
the same time, these experiments reveal several intriguing patterns that informed the design of our
proposed formulation:

• For any model size and unique data budget, validation loss eventually increases once trained
for sufficiently many epochs.

• With a fixed unique data budget, smaller models overfit more slowly.
• With fixed model size, larger unique data budgets delay overfitting.
• The minimum achievable loss decreases monotonically with unique data size.
• For a fixed unique data size, the minimum achievable loss is non-monotonic w.r.t. model size: it

first decreases as capacity grows, then increases as overfitting dominates.

With that in mind, we proposed the below formula:

𝐿(𝑁,𝑈𝐷, 𝑒) ≜ 𝐸 + 𝐴

𝑁𝛼
+ 𝐵

𝐷′𝛽

where 𝐷′ = 𝑈𝐷 · 𝑒𝑝𝑒 · exp
(
−

(
max(0, 𝑒 − 1)

𝑒𝑝

)𝛾)
and 𝑒𝑝 = 𝑐𝑝

𝑈
𝑚𝑝

𝐷

𝑁𝑘𝑝

(14)

Our formulation introduces ten coefficients to fit: the irreducible loss 𝐸, and the parameters 𝛼,
𝛽, 𝐴, 𝐵, 𝑐𝑝, 𝑚𝑝, 𝑘𝑝, 𝑝𝑒, and 𝛾. This functional form extends the Chinchilla scaling law to capture the
U-shaped validation loss curves characteristic of multi-epoch training under data constraints. The key
modification is replacing the dataset size 𝐷 in Chinchilla with an "effective dataset size" 𝐷′, which

11

Training Optimal Large Diffusion Language Models

depends on the number of epochs 𝑒, model size 𝑁, and unique data size 𝑈𝐷. This formulation has the
following desirable properties:

Full learning–overfitting cycle modeling. The effective dataset size 𝐷′ is defined as the product of
a learning term (𝑒𝑝𝑒) and an overfitting penalty (exp(. . .)). At small 𝑒, the learning term dominates, 𝐷′

increases, and validation loss decreases. At large 𝑒, the penalty dominates, 𝐷′ shrinks, and validation
loss rises—capturing the complete learning–overfitting cycle and aligning with the first observation.

Capturing the dynamics of the optimal epoch. The peak overfitting epoch 𝑒𝑝 explicitly models
the trade-off between model size and data budget. The numerator term 𝑈

𝑚𝑝

𝐷 ensures that more unique
data postpones overfitting (larger 𝑒𝑝), while the denominator term 𝑁𝑘𝑝 reflects that larger models
overfit more quickly (smaller 𝑒𝑝). This directly accounts for the second and third observations.

Predicting optimal performance limits. The formulation preserves the core structure of a scaling
law. A larger unique data budget 𝑈𝐷 increases the attainable peak of 𝐷′, yielding a lower minimum
validation loss, consistent with the fourth observation. For the fifth observation, the interaction
between the capacity term (𝐴/𝑁𝛼) and the data–overfitting term (𝐵/𝐷′𝛽, with 𝐷′ dependent on 𝑁 via
𝑒𝑝) reproduces the U-shaped dependence of optimal loss on model size under a fixed data budget.

Natural reduction to the compute-constrained law when 𝑒 ≤ 1. A key property of this
formulation is that it generalizes compute-constrained formula in a consistent way. At one epoch of
training (𝑒 ≤ 1), the max(0, 𝑒 − 1) term vanishes, the exponential penalty equals 1, and the effective
dataset size reduces to 𝐷′ = 𝑈𝐷 · 1𝑝𝑒 = 𝑈𝐷. The loss then simplifies to 𝐿 = 𝐸 + 𝐴/𝑁𝛼 + 𝐵/𝑈𝛽

𝐷, exactly
recovering the compute-constrained law for a model of size 𝑁 trained on 𝑈𝐷 tokens.

By adding only five parameters (𝑐𝑝, 𝑚𝑝, 𝑘𝑝, 𝑝𝑒, 𝛾) to the original five compute-constrained coeffi-
cients, the formulation effectively models the three-dimensional optimization space of model size,
unique data budget, and training epochs.

4.2. Optimal Model Scaling

We fit the proposed formula on 23,145 runs spanning different values of 𝑁, 𝑈𝐷, and 𝑒, using the same
fitting procedure as in the compute-constrained setting. The resulting fitted form is:

𝐿(𝑁,𝑈𝐷, 𝑒) =
1535.23
𝑁0.42 + 54.21

©­«𝑈𝐷 · 𝑒1.49 · exp ©­«−
(
max(0,𝑒−1)

254.35
𝑈0.39
𝐷

𝑁0.55

)0.40ª®¬ª®¬
0.13

(15)

From the fitted formula, we can interpret that the onset of overfitting scales roughly as 𝑒opt ∝
𝑈0.39
𝐷 /𝑁0.55. The irreducible loss diminishes to a negligible value and is omitted, likely because the

interaction among 𝑁, 𝑈𝐷, and 𝑒 implicitly induces an effective lower bound. Using the fitted validation
loss form, we plot loss contours in the (𝑁, 𝑒) plane under varying 𝑈𝐷, which predict the validation
landscape given (𝑁,𝑈𝐷, 𝑒) and provide guidance for the two central questions. The results reveal
the existence of local optima when the unique-token budget is fixed. Moreover, larger unique-token
budgets generally require both larger models and more epochs to be fully exploited. However, the
extremely low validation losses predicted in the contours may not be fully attainable in practice due
to fitting error.

The fitted formula also enables practical guidance for training DLMs under data constraints. Table 3
addresses the first question: given model size, unique data budget, and unbounded compute, how many

12

Training Optimal Large Diffusion Language Models

1 10 100 1K 10K

100M

1B

10B

100B

M
od

el
 P

ar
am

et
er

s (
N)

 545.4M

 803

8B Unique tokens (UD)

1 10 100 1K 10K

100M

1B

10B

100B

 701.8M

 937

16B Unique tokens (UD)

1 10 100 1K 10K

100M

1B

10B

100B

 928.8M

 1037

32B Unique tokens (UD)

1 10 100 1K 10K

100M

1B

10B

100B

M
od

el
 P

ar
am

et
er

s (
N)

 1.2B

 1204

64B Unique tokens (UD)

1 10 100 1K 10K

100M

1B

10B

100B

 1.6B

 1338

128B Unique tokens (UD)

1 10 100 1K 10K

100M

1B

10B

100B

 2.0B

 1539

256B Unique tokens (UD)

1 10 100 1K 10K
Epochs (e)

100M

1B

10B

100B

M
od

el
 P

ar
am

et
er

s (
N)

 2.7B

 1739

512B Unique tokens (UD)

1 10 100 1K 10K
Epochs (e)

100M

1B

10B

100B

 3.5B

 1974

1024B Unique tokens (UD)

1 10 100 1K 10K
Epochs (e)

100M

1B

10B

100B

 4.6B

 2208

2048B Unique tokens (UD)

0.4

0.6

0.8

1.0

1.2

1.4

lo
g1

0(
Lo

ss
)

0.2

0.4

0.6

0.8

1.0

1.2

lo
g1

0(
Lo

ss
)

0.2

0.4

0.6

0.8

1.0

lo
g1

0(
Lo

ss
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
lo

g1
0(

Lo
ss

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
g1

0(
Lo

ss
)

0.0

0.1

0.2

0.3

0.4

0.5

lo
g1

0(
Lo

ss
)

0.0

0.1

0.2

0.3

0.4

lo
g1

0(
Lo

ss
)

0.1

0.0

0.1

0.2

0.3

0.4

lo
g1

0(
Lo

ss
)

0.1

0.0

0.1

0.2

0.3

0.4

lo
g1

0(
Lo

ss
)

Figure 5 | The loss contours predicted by the fitted data-constrained loss 𝐿(𝑁,𝑈𝐷, 𝑒). We exhibit
the 𝑁 - 𝑈𝐷 contours with different unique data budgets 𝑈𝐷. We observe a local optima within each
observation scope and the optimal 𝑁 and 𝑒 consistently grow with 𝑒.

epochs can be run before performance degradation occurs? For reference, we include representative
model parameter counts aligned with the compute-constrained scaling law. Table 4 addresses the
second question: given a fixed unique data budget and unbounded compute, what is the optimal allocation
of model size and training epochs?

Caveats (1) The validation loss landscape remains poorly understood, and its mathematical form
is far from established. We do not have a strict theoretical justification for our formulation, and
thus cannot claim it holds universally. For instance, we observed double-descent behavior in a small
subset of long-epoch runs. In our fitting, we assume a single descent and truncate the second peak
for these cases. (2) In Figure 16, we compared actual 𝑁–𝑒 optima across data budgets against the
fitted ones. The fitted contours tend to overshoot epochs and underestimate model size. Similarly,
in Figure 17, we show actual vs. predicted validation losses for randomly sampled (𝑁,𝑈𝐷, 𝑒). While
Equation (15) captures the overall loss shape, noticeable gaps remain in some cases. §B provides
alternative formulations and predictions that may also be plausible but resulted in higher loss in the
fitting. (3) Validation loss values depend heavily on the choice of validation set and tokenizer, making
absolute values less meaningful. The emphasis should instead be on trends and the dynamic interplay
among variables.

13

Training Optimal Large Diffusion Language Models

Table 3 | The maximum epochs one can train given the model parameters 𝑁 and unique tokens
𝑈𝐷, predicted by the fitted data-constrained loss function 15, answering question 1.

𝑁 / 𝑈𝐷 10 M 100 M 1 B 10 B 100 B 1 T 10 T 100 T 1000 T

400 M 70 175 430 1057 2593 6357 15585 38205 93651
1 B 42 105 260 641 1572 3857 9456 23180 56821

10 B 11 29 73 181 447 1098 2693 6603 16187
67 B 1 9 25 63 157 388 953 2339 5736

175 B 1 4 14 37 93 229 564 1385 3398
280 B 1 1 10 28 71 177 436 1072 2629
520 B 1 1 7 20 50 126 311 764 1875

1 T 1 1 4 13 35 88 217 535 1312
10 T 1 1 1 1 9 24 61 151 373

Table 4 | The optimal model parameters 𝑁 and epochs 𝑒 allocation under different unique tokens
𝑈𝐷, predicted by the fitted data-constrained loss function 15, answering question 2.

Unique Tokens Parameters Epochs FLOPs

10 M 41 M 247 6.07e+17
100 M 95 M 356 2.04e+19

1 B 222 M 569 7.59e+20
10 B 518 M 910 2.83e+22

100 B 1.6 B 1151 1.11e+24
1 T 3.7 B 1842 4.12e+25

10 T 8.7 B 2947 1.54e+27
100 T 20.2 B 4715 5.72e+28

1000 T 47.1 B 7543 2.13e+30

5. Key Modeling and Optimization Choices

Training optimal diffusion language models depends on more than parameter allocation, dataset size,
and training epochs. Here, we ablate additional factors. Given resource constraints, a full ablation is
infeasible; instead, we focus on the factors we consider most critical.

We report benchmark results on HellaSwag (commonsense reasoning) and MMLU (knowledge),
chosen for their popularity and stability across model configurations (Liu et al., 2023; Muennighoff
et al., 2024). Their broad adoption allows direct comparison with prior work, making them reliable
indicators for assessing the impact of our ablations.

5.1. Masked vs. Uniform Transition Kernel

In this ablation, we examine two key variants of discrete diffusion models for language: uniform
diffusion and masked (absorbing) diffusion. Their primary difference lies in the state transition rules,
which govern how text is corrupted in the forward process and reconstructed in the reverse process.

The uniform diffusionmodel corrupts a sentence by progressively replacing tokens with randomly
sampled ones from the vocabulary, eventually reducing the text to uniform noise. Its reverse process
learns to denoise this sequence, gradually refining random tokens into a coherent sentence. In
contrast, the masked diffusion model corrupts text by replacing tokens with a special [MASK] token.

14

Training Optimal Large Diffusion Language Models

Figure 6 | Upper: Masked and uniform transition kernels. 1B models are trained on 96B unique
tokens. Masked DLMs significantly outperforms the uniform ones. Lower: The training and validation
loss for the clean and corrupted positions of the uniform DLM.

Its reverse process resembles a fill-in-the-blank task, predicting the original words within a fully or
partially masked sequence.

Formally, both dynamics are defined by a continuous-time Markov process with transition rate
matrix 𝑄. In uniform diffusion, transitions from any token to any other occur at a constant rate,
yielding the following 𝑁 × 𝑁 matrix for vocabulary size 𝑁:

𝑄uniform =

©­­­­«
1 − 𝑁 1 · · · 1
1 1 − 𝑁 · · · 1
...

...
. . .

...

1 1 · · · 1 − 𝑁

ª®®®®¬
(16)

Here, the off-diagonal entries denote the uniform transition rate to any other token, while the
diagonal entries capture the rate of leaving the current token state.

In contrast, masked diffusion restricts transitions to a single absorbing [MASK] state. The rate
matrix is structured to enforce this one-way corruption in the forward process while simultaneously
defining the generative dynamics for the reverse process. Assuming the final index corresponds to
the [MASK] token, the matrix takes the form:

𝑄absorb =

©­­­­­­«

−1 0 · · · 0 0
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 0
1 1 · · · 1 0

ª®®®®®®¬
(17)

The diagonal −1s specify the transition rate from any token to the [MASK] state. In the forward
process, this drives sequences to become fully masked within finite time. The final row of ones

15

Training Optimal Large Diffusion Language Models

encodes the reverse transitions, allowing the [MASK] state to generate any vocabulary token, which
the model learns to parameterize.

Masked diffusion is often easier to model, as the task reduces to filling in masked positions rather
than distinguishing noise from clean tokens. Both theoretical and empirical studies suggest that
masked diffusion models generally outperform uniform ones (Amin et al., 2025; Lou et al., 2023).
However, direct large-scale comparisons under LLM evaluation settings remain absent.

We compare masked and uniform diffusion pre-training using a broad set of metrics. As shown in
Figure 6, masked diffusion consistently outperforms uniform diffusion across all metrics by a wide
margin. To further probe the uniform variants, we plot their losses on both clean and noisy positions.
Although the model is not explicitly given indicators for these positions, it learns to distinguish most
noisy from clean tokens with low loss (around 0.15). This suggests that the main challenge lies not in
identifying noisy versus clean tokens, but in transforming arbitrary embeddings into the correct ones.

It is worth noting that the uniform diffusion loss used here does not compute an exact ELBO,
as multiple variants exist and complicate head-to-head comparisons. Instead, we adopt the same
reweighting scheme as masked diffusion for noisy positions and average the loss over clean ones,
enabling a direct comparison of the learning difficulty between masking and uniform transitions.
Additionally, uniform diffusion includes a continuous-time embedding layer, which introduces minimal
parameter overhead.

5.2. Diffusion Schedules

Figure 7 | Upper: Three commonly used diffusion schedules and their performances. 1B models
are trained on 96B unique tokens. Lower: The shapes of 𝛼𝑡 and cross entropy reweighting
𝜕𝑡𝛼𝑡/(1 − 𝛼𝑡).

The diffusion schedule is a central design choice in training DLMs. We ablate two types of
schedules. The first is the standard diffusion schedule, a predefined sequence controlling the rate and
manner of noise injection and removal at each step. The second is the noise-level sampling schedule
across the training lifecycle, where different noise levels are sampled at different stages.

Diffusion schedule. We examine three common schedules: linear, poly2, and cosine, defined as
𝛼 = 1 − 𝑡, 𝛼 = 1 − 𝑡2, and 𝛼 = 1 − cos

(
𝜋
2 (1 − 𝑡)

)
, respectively. Figure 7 (bottom) illustrates their shapes.

16

Training Optimal Large Diffusion Language Models

Cosine assigns higher-than-average probability to masking, poly2 lower, and linear lies in between.
From pre-training and evaluation results (Figure 7), cosine performs worst across metrics, while
linear consistently outperforms the others in both train/val loss and MMLU. Linear also exhibits lower
variance than nonlinear schedules, consistent with Shi et al. (2024). The poly2 schedule achieved
better performance on HellaSwag.

0 50 100

3.0

3.5

4.0

Pe
rf

or
m

an
ce

Training Loss (Smoothed)

0 50 100

3.5

4.0

Validation Loss (C4)

0 50 100

30

40

50
HellaSwag

0 50 100
26

28

30

32
MMLU Val

Tokens (B)

Default
Moving Gaussian

Figure 8 | Uniform 𝑡 vs. clean-to-noisy 𝑡 sampling, where a moving Gaussian window gradually shifts
from low-noise sampling early in training to high-noise sampling later, implementing an easy-to-hard
curriculum. 1B models are trained on 96B unique tokens.

Training-time noise schedule. A natural intuition in training DLMs is to begin with cleaner data
and gradually increase noise, aiming for stronger end-of-training performance (Zhu et al., 2025b).
This is straightforward to implement by adjusting the sampling of 𝑡. In our setup, we use a moving
Gaussian window to bias 𝑡 toward lower values early in training, so the model first learns easier
prediction tasks before progressively transitioning to harder ones as the Gaussian window shifts from
0 to 1. Results show that this schedule yields faster loss reduction in the early stages, followed by
rising loss as noisier samples dominate. It achieves slightly better end-of-training performance across
both benchmarks, suggesting this direction merits further study.

5.3. Diffusion Loss Formula

0 100 200 300
2

4

6

8

10

Pe
rf

or
m

an
ce

Training Loss

0 100 200 300
30

40

50

HellaSwag

0 100 200 300

27.5

30.0

32.5

35.0
MMLU Val

Tokens (B)

Diffusion
MaskGIT

Figure 9 | Principled diffusion loss (Equation (9)) and MaskGIT loss (Equation (9) without
reweighting). 1B models are trained on 300B unique tokens.

Generative masked language models can be trained using either the principled diffusion loss (Shi
et al., 2024) or the masked loss (Chang et al., 2022). The diffusion loss is generally regarded as
more faithful, since it optimizes a likelihood lower bound and is expected to yield better results.
We compare masked generative models trained with diffusion loss (Equation (9)) and MaskGIT
loss (Equation (9) without reweighting) over 300B tokens. Surprisingly, despite not optimizing a
principled ELBO, MaskGIT achieves consistently comparable performance throughout training and

17

Training Optimal Large Diffusion Language Models

even converges faster on both evaluations. While diffusion loss ultimately delivers stronger end-of-
training performance on both benchmarks, this finding highlights the need for further study of how
theoretical bounds influence training dynamics.

5.4. Batch Size and Learning Rate Transferability

Figure 10 | Batch size transferability from AR models (upper) to DLMs (lower). Both show
consistent trends across batch sizes, suggesting that DLM training can leverage batch size laws from
AR studies. 1B models are trained on 96B unique tokens.

Figure 11 | Learning rate transferability from AR models (upper) to DLMs (lower). Both show
consistent trends across learning rates, suggesting that DLM training can leverage learning rate laws
from AR studies. 1B models are trained on 96B unique tokens.

18

Training Optimal Large Diffusion Language Models

Batch size. Training hyperparameters such as batch size are critical for stability and performance.
AR models have well-established scaling laws for these settings (Li et al., 2025). Batch size is closely
tied to dataset size, and diffusion language models (DLMs) effectively augment data through noise
injection (Ni and team, 2025), often exhibiting higher variance in pre-training loss. Larger batches
can mitigate both issues, raising the question of whether DLMs favor larger batch sizes than AR
counterparts. Surprisingly, as shown in Figure 10, training dynamics for AR and DLMs are similar:
batch size 4096 lags behind 256 and 1024, with the latter two performing comparably. This suggests
that changing the training objective does not alter the optimal batch size when data and model
architecture are fixed, implying that established AR scaling laws might be able to transfer directly to
DLMs.

Learning rate. We also examine the transferability of learning rate, another key hyperparameter.
We grid search three peak values ranging from small to large. As shown in Figure 11, both AR and
DLM models show minimal differences in end-of-training performance across learning rates after
annealing, with 1e-4 yielding a slight advantage. Convergence speed differences across learning rates
are also consistent between AR and DLMs. These results further support that the training objective
does not alter the optimal hyperparameter space, and that DLMs can directly reuse established
learning rate practices from AR models.

5.5. Weight decay

Figure 12 | The impact of weight decay on AR models in single epoch scenarios. 1B AR models
are trained with and without weight decay, on 96B unique tokens.

Weight decay is a standard technique in LLM pre-training to keep parameter norms stable and
mitigate issues such as overfitting and numerical instability. We investigate its effect in DLM pre-
training by comparing AR and DLM models with and without weight decay under two settings:
single-epoch and multi-epoch training.

Single-epoch training. We train models for 96B tokens over 1 epoch. As shown in Figure 12 and
Figure 13, neither AR nor DLM benefits from weight decay in this regime; in fact, removing weight

19

Training Optimal Large Diffusion Language Models

Figure 13 | The impact of weight decay on DLMs in single epoch scenarios. 1B DLMs are trained
with and without weight decay, on 96B unique tokens.

decay leads to faster convergence.

0 50 100
0.0

2.5

5.0

7.5

10.0

P
e
rf

o
rm

a
n

c
e

Training Loss

0 50 100

4

5

6

Validation Loss (C4)

0 50 100

35

40

HellaSwag

0 50 100
26

27

28

29

30

MMLU Val

Tokens (B)

w/

w/o

Figure 14 | The impact of weight decay on AR models in multi-epoch scenarios. 1B AR models
are trained with and without weight decay, on 1B unique tokens for 96 epochs.

Multi-epoch training. We train models on 1B unique tokens for 96 epochs, a setting prone to
overfitting where weight decay is expected to play a larger role. As shown in Figure 14, removing
weight decay severely degrades AR models’ validation loss and benchmark performance. In contrast,
DLMs remain largely unaffected and appear robust to data repetition even without weight decay.
That said, applying weight decay still yields better end-of-training results across all metrics.

20

Training Optimal Large Diffusion Language Models

Figure 15 | The impact of weight decay on DLMs in multi-epoch scenarios. 1B DLMs trained are
with and without weight decay, on 1B unique tokens for 96 epochs.

Although weight decay shows limited benefit in 3 of 4 ablations, maintaining healthy parameter
norms remains important. As shown in Figure 12–15, removing weight decay consistently increases
the L2 norm of parameters, risking numerical instability. In practice, this can cause logits before
softmax to collapse, since bf16 provides only 7 mantissas bits and quantization becomes coarse for
values above 128, substantially harming both training and inference performance.

6. Related Work

6.1. Scaling Laws

Understanding how scaling affects large language model (LLM) performance has been a central
research focus. The seminal work of Kaplan et al. (2020) showed that model performance follows
predictable power-law trends with respect to model size, compute, and training data, implying that
ever-larger models should yield better results. This paradigm shaped the development of models such
as GPT-3 (Brown et al., 2020). However, Hoffmann et al. (2022) challenged this view with Chinchilla,
demonstrating that, under a fixed compute budget, optimal performance arises from scaling model
size and training data in tandem. This revealed that many prior models, including Gopher (Rae
et al., 2021), were undertrained, shifting the field’s understanding toward balanced scaling and more
efficient compute utilization.

Subsequent research has refined our understanding of scaling laws, particularly in data-constrained
regimes. The Chinchilla laws, though influential, assume effectively unlimited training data. As
models scale further, the scarcity of unique, high-quality data has emerged as a critical bottleneck.
Muennighoff et al. (2023) introduced a data-constrained scaling law (Equation (7)) to model val-
idation loss under limited data, where repeated exposure reduces the "effective model size" and
"effective data size." While this captures diminishing returns, the formulation has a key limitation:
it enforces a non-increasing validation loss, whereas in practice repeated epochs inevitably induce
overfitting, increasing validation loss due to the bias–variance tradeoff. In this work, we propose a
new formulation that addresses this flaw.

21

Training Optimal Large Diffusion Language Models

Beyond pre-training loss, scaling law research is expanding to downstream task performance (Isik
et al., 2024), inference dynamics (Wu et al., 2025b), and theoretical grounding, linking empirical
trends to concepts such as data manifold dimensionality (Bahri et al., 2024; Sharma and Kaplan, 2022).
This broadening scope underscores the need for more refined laws that integrate model architecture,
data quality, and task-specific requirements. Li et al. (2025) further explored hyperparameter scaling,
offering practical guidance for pre-training choices.

For DLMs, systematic scaling laws were lacking prior to Quokka. Nie et al. (2024) trained models
at low FLOPs budgets to compare scaling trends of AR models and DLMs, marking an important step
toward DLM scaling, though their study provided only limited scaling law coefficients & insights.

6.2. Diffusion language models

Building on the theoretical foundations of DLMs (Lou et al., 2023; Ou et al., 2024; Sahoo et al.,
2024; Shi et al., 2024), Nie et al. (2025) trained the first large-scale DLM from scratch, achieving
performance competitive with leading open-source AR models (Dubey et al., 2024). In parallel, several
commercial DLMs have emerged, demonstrating strong coding and math capabilities while offering
significantly lower generation latency (Google DeepMind, 2025; Khanna et al., 2025; Song et al.,
2025). Ni and team (2025) further showed that DLMs possess substantially higher data potential
than AR models under limited data, enabling so-called "intelligence crossovers" that highlight their
advantage in the face of the token crisis (Muennighoff et al., 2023; Xue et al., 2023).

Efforts have also explored hybrid approaches bridging AR and diffusion. Block diffusion (Arriola
et al., 2025) performs block-wise diffusion, with block size 1 similar to AR modeling without shift.
Dream (Ye et al., 2025) initialized DLMs with AR priors and employed a "shift-by-one" strategy to
better retain AR knowledge, offering another effective training paradigm. Recent work has also
advanced DLM coders (Gong et al., 2025; Xie et al., 2025), DLM RL scaling (Zhu et al., 2025a),
accelerated inference techniques (Wu et al., 2025a), pushing DLMs toward greater practicality and
competitiveness.

7. Discussions

In practice, model training is often constrained by resources beyond compute–leading to deviations
from the allocations prescribed by scaling laws. For instance, Llama 3 (Dubey et al., 2024) trained
an 8B model with 15T tokens, whereas the Chinchilla law would suggest a 70B model for 2T
tokens. Several factors contribute to such deviations: (1) Scaling-optimal allocation is not the only
consideration for commercial models; factors such as deployability, customer adoption, and hardware
compatibility (e.g., GPU/TPU memory limits) play a decisive role. (2) Compute budgets are not
always strict. In many cases, one can effectively "expand" compute by extending training time, making
smaller models with more data or epochs more practical than adhering rigidly to scaling predictions.
(3) Current compute- and data-constrained scaling laws are limited in scope, and their coefficients
can shift across architectures and datasets. Thus, scaling laws should be viewed as high-level guidance
on balancing model size, data, and training duration, while precise choices require empirical tuning
under specific constraints.

References

A. N. Amin, N. Gruver, and A. G. Wilson. Why masking diffusion works: Condition on the jump
schedule for improved discrete diffusion. arXiv preprint arXiv:2506.08316, 2025.

22

Training Optimal Large Diffusion Language Models

M. Arriola, A. Gokaslan, J. T. Chiu, Z. Yang, Z. Qi, J. Han, S. S. Sahoo, and V. Kuleshov. Block
diffusion: Interpolating between autoregressive and diffusion language models. arXiv preprint
arXiv:2503.09573, 2025.

Y. Bahri, E. Dyer, J. Kaplan, J. Lee, and U. Sharma. Explaining neural scaling laws. Proceedings of the
National Academy of Sciences, 121(27):e2311878121, 2024.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020.

H. Chang, H. Zhang, L. Jiang, C. Liu, and W. T. Freeman. Maskgit: Masked generative image
transformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 11315–11325, 2022.

Common Crawl. Statistics of common crawl monthly archives: Crawl size, 2025. URL https:
//commoncrawl.github.io/cc-crawl-statistics/plots/crawlsize.

A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten, A. Yang,
A. Fan, et al. The llama 3 herd of models. arXiv e-prints, pages arXiv–2407, 2024.

S. Gong, R. Zhang, H. Zheng, J. Gu, N. Jaitly, L. Kong, and Y. Zhang. Diffucoder: Understanding and
improving masked diffusion models for code generation. arXiv preprint arXiv:2506.20639, 2025.

Google DeepMind. Gemini diffusion: Our state-of-the-art, experimental text diffusion model. https:
//deepmind.google/models/gemini-diffusion/, 2025. Accessed: 2025-09-23.

R. Han, Y. Chen, Z. CuiZhu, L. Miculicich, G. Sun, Y. Bi, W. Wen, H. Wan, C. Wen, S. Maître, et al.
Deep researcher with test-time diffusion. arXiv preprint arXiv:2507.16075, 2025.

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L. Casas, L. A.
Hendricks, J. Welbl, A. Clark, et al. Training compute-optimal large language models. arXiv preprint
arXiv:2203.15556, 2022.

S. Hu, Y. Tu, X. Han, C. He, G. Cui, X. Long, Z. Zheng, Y. Fang, Y. Huang, W. Zhao, et al. Minicpm:
Unveiling the potential of small language models with scalable training strategies. arXiv preprint
arXiv:2404.06395, 2024.

P. J. Huber. Robust estimation of a location parameter. In Breakthroughs in statistics: Methodology
and distribution, pages 492–518. Springer, 1992.

B. Isik, N. Ponomareva, H. Hazimeh, D. Paparas, S. Vassilvitskii, and S. Koyejo. Scaling laws for
downstream task performance of large language models. arXiv preprint arXiv:2402.04177, 2024.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu,
and D. Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.

S. Khanna, S. Kharbanda, S. Li, H. Varma, E. Wang, S. Birnbaum, Z. Luo, Y. Miraoui, A. Palrecha, S. Er-
mon, et al. Mercury: Ultra-fast languagemodels based on diffusion. arXiv preprint arXiv:2506.17298,
2025.

H. Li, W. Zheng, J. Hu, Q. Wang, H. Zhang, Z. Wang, S. Xuyang, Y. Fan, S. Zhou, X. Zhang, et al.
Predictable scale: Part i–optimal hyperparameter scaling law in large language model pretraining.
arXiv e-prints, pages arXiv–2503, 2025.

23

https://commoncrawl.github.io/cc-crawl-statistics/plots/crawlsize
https://commoncrawl.github.io/cc-crawl-statistics/plots/crawlsize
https://deepmind.google/models/gemini-diffusion/
https://deepmind.google/models/gemini-diffusion/

Training Optimal Large Diffusion Language Models

Z. Liu, A. Qiao, W. Neiswanger, H. Wang, B. Tan, T. Tao, J. Li, Y. Wang, S. Sun, O. Pangarkar, et al.
Llm360: Towards fully transparent open-source llms. arXiv preprint arXiv:2312.06550, 2023.

A. Lou, C. Meng, and S. Ermon. Discrete diffusion modeling by estimating the ratios of the data
distribution. arXiv preprint arXiv:2310.16834, 2023.

N. Muennighoff, A. Rush, B. Barak, T. Le Scao, N. Tazi, A. Piktus, S. Pyysalo, T. Wolf, and C. A. Raffel.
Scaling data-constrained language models. Advances in Neural Information Processing Systems, 36:
50358–50376, 2023.

N. Muennighoff, L. Soldaini, D. Groeneveld, K. Lo, J. Morrison, S. Min, W. Shi, P. Walsh,
O. Tafjord, N. Lambert, et al. Olmoe: Open mixture-of-experts language models. arXiv preprint
arXiv:2409.02060, 2024.

J. Ni and team. Diffusion language models are super data learners. https://jinjieni.notion.
site/Diffusion-Language-Models-are-Super-Data-Learners-239d8f03a866800ab196e49928c019ac,
2025. Notion Blog.

S. Nie, F. Zhu, C. Du, T. Pang, Q. Liu, G. Zeng, M. Lin, and C. Li. Scaling up masked diffusion models
on text. arXiv preprint arXiv:2410.18514, 2024.

S. Nie, F. Zhu, Z. You, X. Zhang, J. Ou, J. Hu, J. Zhou, Y. Lin, J.-R. Wen, and C. Li. Large language
diffusion models. arXiv preprint arXiv:2502.09992, 2025.

J. Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of computation, 35
(151):773–782, 1980.

J. Ou, S. Nie, K. Xue, F. Zhu, J. Sun, Z. Li, and C. Li. Your absorbing discrete diffusion secretly models
the conditional distributions of clean data. arXiv preprint arXiv:2406.03736, 2024.

J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song, J. Aslanides, S. Henderson, R. Ring,
S. Young, et al. Scaling language models: Methods, analysis & insights from training gopher. arXiv
preprint arXiv:2112.11446, 2021.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring
the limits of transfer learning with a unified text-to-text transformer. Journal of machine learning
research, 21(140):1–67, 2020.

S. Sahoo, M. Arriola, Y. Schiff, A. Gokaslan, E. Marroquin, J. Chiu, A. Rush, and V. Kuleshov. Simple
and effective masked diffusion language models. Advances in Neural Information Processing Systems,
37:130136–130184, 2024.

J. Sevilla and E. Roldán. Training compute of frontier ai models grows
by 4–5× per year, May 28 2024. URL https://epoch.ai/blog/
training-compute-of-frontier-ai-models-grows-by-4-5x-per-year.

U. Sharma and J. Kaplan. Scaling laws from the data manifold dimension. Journal of Machine Learning
Research, 23(9):1–34, 2022.

J. Shi, K. Han, Z. Wang, A. Doucet, and M. Titsias. Simplified and generalized masked diffusion for
discrete data. Advances in neural information processing systems, 37:103131–103167, 2024.

Y. Song, Z. Zhang, C. Luo, P. Gao, F. Xia, H. Luo, Z. Li, Y. Yang, H. Yu, X. Qu, et al. Seed diffusion: A
large-scale diffusion language model with high-speed inference. arXiv preprint arXiv:2508.02193,
2025.

24

https://jinjieni.notion.site/Diffusion-Language-Models-are-Super-Data-Learners-239d8f03a866800ab196e49928c019ac
https://jinjieni.notion.site/Diffusion-Language-Models-are-Super-Data-Learners-239d8f03a866800ab196e49928c019ac
https://epoch.ai/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year
https://epoch.ai/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year

Training Optimal Large Diffusion Language Models

D. Su, K. Kong, Y. Lin, J. Jennings, B. Norick, M. Kliegl, M. Patwary, M. Shoeybi, and B. Catanzaro.
Nemotron-cc: Transforming common crawl into a refined long-horizon pretraining dataset. arXiv
preprint arXiv:2412.02595, 2024.

C. Wu, H. Zhang, S. Xue, Z. Liu, S. Diao, L. Zhu, P. Luo, S. Han, and E. Xie. Fast-dllm: Training-
free acceleration of diffusion llm by enabling kv cache and parallel decoding. arXiv preprint
arXiv:2505.22618, 2025a.

Y. Wu, Z. Sun, S. Li, S. Welleck, and Y. Yang. Inference scaling laws: An empirical analysis of compute-
optimal inference for llm problem-solving. The Thirteenth International Conference on Learning
Representations, 2025b.

Z. Xie, J. Ye, L. Zheng, J. Gao, J. Dong, Z. Wu, X. Zhao, S. Gong, X. Jiang, Z. Li, et al. Dream-coder 7b:
An open diffusion language model for code. arXiv preprint arXiv:2509.01142, 2025.

F. Xue, Y. Fu, W. Zhou, Z. Zheng, and Y. You. To repeat or not to repeat: Insights from scaling llm
under token-crisis. Advances in Neural Information Processing Systems, 36:59304–59322, 2023.

J. Ye, Z. Xie, L. Zheng, J. Gao, Z. Wu, X. Jiang, Z. Li, and L. Kong. Dream 7b: Diffusion large language
models. arXiv preprint arXiv:2508.15487, 2025.

F. Zhu, R. Wang, S. Nie, X. Zhang, C. Wu, J. Hu, J. Zhou, J. Chen, Y. Lin, J.-R. Wen, et al. Llada
1.5: Variance-reduced preference optimization for large language diffusion models. arXiv preprint
arXiv:2505.19223, 2025a.

T. Zhu, Q. Liu, H. Wang, S. Chen, X. Gu, T. Pang, and M.-Y. Kan. Skyladder: Better and faster
pretraining via context window scheduling. arXiv preprint arXiv:2503.15450, 2025b.

A. Implementation Details

All experiments were conducted with a heavily modifiedMegatron-LM codebase. Compute-constrained
runs and ablations were trained on a subset of the Nemotron-CC corpus (Su et al., 2024), while
data-constrained runs used a subset of the c4-en corpus (Raffel et al., 2020). Validation losses were
consistently evaluated on the c4-val split, following Muennighoff et al. (2023). Token budgets were
randomly sampled from the respective corpora without additional filtering. Model parameters were
initialized from a normal distribution with standard deviation 0.02. Architecturally, we adopted
a performant configuration combining the GPT-2 tokenizer, RoPE, SwiGLU, pre-layer RMSNorm,
bias-free layers, and qk normalization.

For compute-constrained runs, we applied Gaussian smoothing with a window size of 301 (vs. 10
in Chinchilla), reducing variance by ∼13×. This substantially improved fitting stability at the cost of
a mild bias, corresponding to a ∼40-step lag. Learning rates were set to 2e−4 for models <8B and
1.25e−4 for models >8B, with a cosine decay schedule. To reuse prior epoch runs and collect stable
data points, we employed the Warmup-Stable schedule (Hu et al., 2024) with peak learning rate
2e−4.

All models were trained with sequence length 2048. Batch size was scaled with model size: 256
for ≤1.5B, 512 for 1.5B–5B, and 1024 for >5B, the latter chosen for stability.

25

Training Optimal Large Diffusion Language Models

1 10 100 10001M

10M

100M

1.0B

10.0B

M
od

el
 P

ar
am

et
er

s (
N)

 42.9M

 235

 145.0M

 171

10M Unique Tokens (UD)

1 10 100 10001M

10M

100M

1.0B

10.0B

 51.6M

 268

 145.0M

 151

17M Unique Tokens (UD)

1 10 100 10001M

10M

100M

1.0B

10.0B

 62.0M

 301

 217.0M

 131

29M Unique Tokens (UD)

1 10 100 1000
Epochs (e)

1M

10M

100M

1.0B

10.0B

M
od

el
 P

ar
am

et
er

s (
N)

 79.4M

 318

 217.0M

 157

49M Unique Tokens (UD)

1 10 100 1000
Epochs (e)

1M

10M

100M

1.0B

10.0B

 95.5M

 352

 166.0M

 404

82M Unique Tokens (UD)

1 10 100 1000
Epochs (e)

1M

10M

100M

1.0B

10.0B

 118.5M

 385

 417.0M

 465

139M Unique Tokens (UD)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

0.6

0.8

1.0

1.2

1.4

1.6

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

0.6

0.8

1.0

1.2

1.4

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

Figure 16 | The contours predicted by Equation (15) v.s. the real data points. Equation (15) tend
to overshoot the epochs and under-estimate the model sizes.

B. Alternative Data-Constrained Formulas and Fitting Results

In this section we present the alternative data-constrained validation loss formulas, which are among
the most effective ones we tried, but the losses (31.52 and 23.8 over 23145 data points) are still far
from Equation (15) (9.78 over 23145 data points).

B.1. Additive Overfitting Term v1

Equation (18) presents an additive formula breaking down the data-constrained scaling law into
learning loss and overfitting penalty, with the fitted form in Equation (21). The predicted contours
are presented in Figure 18 and the contours v.s the actual data points are in Figure 20.

𝐿(𝑒, 𝑁,𝑈𝐷) ≜ 𝐸 + 𝐴

𝑁𝛼
+ 𝐵

(𝐷′(𝑒, 𝑈𝐷))𝛽︸ ︷︷ ︸
Learning Loss

+ 𝜇
(
𝑁

𝑈𝐷

)𝛿
(log(max(1, 𝑒)))𝛾︸ ︷︷ ︸

Overfitting Penalty

, (18)

where 𝐷′(𝑒, 𝑈𝐷) = 𝑈𝐷
(
1 + 𝑅∗𝐷

(
1 − 𝑒𝑥 𝑝(−max(0, 𝑒 − 1)

𝑅∗𝐷
)
))
, (19)

𝐷′(𝑒, 𝑈𝐷) ≈ 𝑈𝐷 ·max(1, 𝑒), as 𝑅∗𝐷 is very large. (20)

𝐿(𝑒, 𝑁,𝑈𝐷) ≈
145962.2
𝑁0.73 + 61.1

[𝑈𝐷 · 𝑒]0.13
+ 58 × 10−4

(
𝑁

𝑈𝐷

)0.43
(log(max(1, 𝑒)))4.49 (21)

26

Training Optimal Large Diffusion Language Models

101 102 103

4.5

5.0

5.5

6.0

Fin
al

 V
al

 L
os

se
s

N=217M, U=29M

102 103
5.0

5.5

6.0

6.5

7.0

7.5
N=14M, U=10M

102 103

5.0

5.5

6.0

6.5

N=65M, U=10M

101 102 103

4.5

5.0

5.5

6.0

6.5

Fin
al

 V
al

 L
os

se
s

N=34M, U=29M

101 102 103

4.0

4.5

5.0
N=1.4B, U=139M

101 102 103
4.5

5.0

5.5

6.0

6.5

N=65M, U=17M

102 103

Epochs

5.0

5.5

6.0

6.5

7.0

Fin
al

 V
al

 L
os

se
s

N=34M, U=10M

101 102 103

Epochs

4.0

4.5

5.0

5.5

6.0

6.5
N=1.1B, U=49M

101 102 103

Epochs

3.5

4.0

4.5

5.0
N=700M, U=139M

Actual Final Val Losses Predicted Final Val Losses Predicted Min Epochs

Figure 17 | The validation losses predicted by Equation (15) v.s. the real validation losses.

B.2. Additive Overfitting Term v2

Similarly, Equation (22) presents an additive formula breaking down the data-constrained scaling
law into learning loss and a more complicated overfitting penalty (after trials), with the fitted form in
Equation (23). The predicted contours are presented in Figure 22 and the contours v.s the actual
data points are in Figure 23.

𝐿(𝑒, 𝑁,𝑈𝐷) = 𝐸 + 𝐴

𝑁𝛼
+ 𝐵

𝐷′𝛽︸ ︷︷ ︸
Learning Loss

+ 𝜇
(
𝑁

𝐷′

)𝛿 softplus
©­­«
𝑒 − 𝜅

(
𝑈𝐷
𝑁

)𝜂
𝜏

ª®®¬

𝛾

︸ ︷︷ ︸
Overfitting Penalty

where 𝐷′(𝑒, 𝑈𝐷) = 𝑈𝐷
(
1 + 𝑅∗𝐷

(
1 − exp

(
− 𝑒 − 1

𝑅∗𝐷

)))
and softplus(𝑥) = log(1 + 𝑒𝑥)

(22)

27

Training Optimal Large Diffusion Language Models

𝐿(𝑒, 𝑁,𝑈𝐷) ≈ 9.505 × 10−66 + 2.738
𝑁1.240 + 53.58

𝐷′0.1207

+ 0.1610
(
𝑁

𝐷′

)0.3073 softplus
©­­«
𝑒 − 12642

(
𝑈𝐷
𝑁

)1.486
26.56

ª®®¬

0.8106

where 𝐷′(𝑒, 𝑈𝐷) = 𝑈𝐷
(
1 + 33.62

(
1 − exp

(
− 𝑒 − 1
33.62

)))
(23)

1 10 100 1K 10K

100M

1B

10B

100B

M
od

el
 P

ar
am

et
er

s (
N)

 107.4M

 1004

1B Unique tokens (U)

1 10 100 1K 10K

100M

1B

10B

100B

 120.1M

 1305

2B Unique tokens (U)

1 10 100 1K 10K

100M

1B

10B

100B

 134.4M

 1706

4B Unique tokens (U)

1 10 100 1K 10K

100M

1B

10B

100B

M
od

el
 P

ar
am

et
er

s (
N)

 150.3M

 2208

8B Unique tokens (U)

1 10 100 1K 10K

100M

1B

10B

100B

 168.1M

 2943

16B Unique tokens (U)

1 10 100 1K 10K

100M

1B

10B

100B

 193.4M

 3813

32B Unique tokens (U)

1 10 100 1K 10K
Epochs (e)

100M

1B

10B

100B

M
od

el
 P

ar
am

et
er

s (
N)

 216.4M

 5117

64B Unique tokens (U)

1 10 100 1K 10K
Epochs (e)

100M

1B

10B

100B

 248.9M

 6756

128B Unique tokens (U)

1 10 100 1K 10K
Epochs (e)

100M

1B

10B

100B

 278.4M

 9230

256B Unique tokens (U)

0.4

0.6

0.8

1.0

1.2

1.4

lo
g1

0(
Lo

ss
)

0.4

0.6

0.8

1.0

1.2

lo
g1

0(
Lo

ss
)

0.4

0.6

0.8

1.0

lo
g1

0(
Lo

ss
)

0.4

0.6

0.8

1.0

lo
g1

0(
Lo

ss
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

lo
g1

0(
Lo

ss
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

lo
g1

0(
Lo

ss
)

0.1

0.2

0.3

0.4

0.5

0.6

lo
g1

0(
Lo

ss
)

0.1

0.2

0.3

0.4

0.5

lo
g1

0(
Lo

ss
)

0.0

0.1

0.2

0.3

0.4

lo
g1

0(
Lo

ss
)

Figure 18 | The contours predicted by Equation (18) and the optimal allocations.

28

Training Optimal Large Diffusion Language Models

102 103

5.0

5.5

6.0

6.5

Va
lid

at
io

n
Lo

ss

N=145M, U=10M

101 102 103

4.5

5.0

5.5

6.0

6.5
N=145M, U=17M

101 102 103

5

6

7

8
N=1.5B, U=29M

101 102 103
4.0

4.5

5.0

5.5

6.0

6.5

Va
lid

at
io

n
Lo

ss

N=1.1B, U=49M

101 102 1034

5

6

7

8
N=2.8B, U=49M

101 102 103

4.0

4.5

5.0

5.5
N=856M, U=82M

101 102 103

Epochs

4.0

4.5

5.0

5.5

Va
lid

at
io

n
Lo

ss

N=417M, U=82M

101 102 103

Epochs

4.5

5.0

5.5

6.0

6.5

N=65M, U=17M

102 103

Epochs

6

8

10

N=1.4B, U=10M

Actual Smoothed Loss Predicted Loss Predicted Min Epochs

Figure 19 | The contours predicted by Equation (18) v.s. the real data points.

Table 5 | The FLOPs and Tokens allocation predicted by approach 2 and 3. Similar to (Hoffmann
et al., 2022), the loss fitting approach under-estimates 𝑁 → 𝑁𝑜𝑝𝑡 for very large models.

Approach 1 Approach 2

Parameters FLOPs Tokens FLOPs Tokens

400 M 9.46e+19 39.3 B 1.06e+20 44.3 B
1 B 5.62e+20 93.5 B 6.68e+20 111.2 B

10 B 4.96e+22 825.2 B 6.74e+22 1.1 T
67 B 2.01e+24 5.0 T 3.05e+24 7.6 T

175 B 1.30e+25 12.4 T 2.09e+25 19.9 T
280 B 3.24e+25 19.3 T 5.35e+25 31.8 T
520 B 1.08e+26 34.6 T 1.85e+26 59.3 T

1 T 3.86e+26 64.2 T 6.86e+26 114.3 T
10 T 3.41e+28 566.4 T 6.93e+28 1153.9 T

29

Training Optimal Large Diffusion Language Models

1 10 100 10001M

10M

100M

1.0B

10.0B

M
od

el
 P

ar
am

et
er

s (
N)

 51.6M

 218

 145.0M

 171

10M Unique Tokens (UD)

1 10 100 10001M

10M

100M

1.0B

10.0B

 56.6M

 251

 145.0M

 151

17M Unique Tokens (UD)

1 10 100 10001M

10M

100M

1.0B

10.0B

 60.2M

 301

 217.0M

 131

29M Unique Tokens (UD)

1 10 100 1000
Epochs (e)

1M

10M

100M

1.0B

10.0B

M
od

el
 P

ar
am

et
er

s (
N)

 66.0M

 352

 217.0M

 157

49M Unique Tokens (UD)

1 10 100 1000
Epochs (e)

1M

10M

100M

1.0B

10.0B

 72.4M

 418

 166.0M

 404

82M Unique Tokens (UD)

1 10 100 1000
Epochs (e)

1M

10M

100M

1.0B

10.0B

 77.0M

 502

 417.0M

 465

139M Unique Tokens (UD)

0.8

1.0

1.2

1.4

1.6

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

0.8

1.0

1.2

1.4

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

Figure 20 | The validation losses predicted by Equation (18) v.s. the real validation losses.

1 10 100 1K 10K 100K

100M

1B

10B

100B

1T

M
od

el
 P

ar
am

et
er

s (
N)

 3.5B

 1004

1B Unique tokens (UD)

1 10 100 1K 10K 100K

100M

1B

10B

100B

1T

 7.0B

 1004

2B Unique tokens (UD)

1 10 100 1K 10K 100K

100M

1B

10B

100B

1T

 13.8B

 1004

4B Unique tokens (UD)

1 10 100 1K 10K 100K

100M

1B

10B

100B

1T

M
od

el
 P

ar
am

et
er

s (
N)

 27.1B

 1004

8B Unique tokens (UD)

1 10 100 1K 10K 100K

100M

1B

10B

100B

1T

 49.8B

 1338

16B Unique tokens (UD)

1 10 100 1K 10K 100K

100M

1B

10B

100B

1T

 98.1B

 1338

32B Unique tokens (UD)

1 10 100 1K 10K 100K
Epochs (e)

100M

1B

10B

100B

1T

M
od

el
 P

ar
am

et
er

s (
N)

 193.4B

 1338

64B Unique tokens (UD)

1 10 100 1K 10K 100K
Epochs (e)

100M

1B

10B

100B

1T
 381.2B

 1338

128B Unique tokens (UD)

1 10 100 1K 10K 100K
Epochs (e)

100M

1B

10B

100B

1T 751.4B

 1338

256B Unique tokens (UD)

0.46

0.98

1.51

2.03

2.56

lo
g1

0(
Lo

ss
)

0.42

0.93

1.44

1.95

2.47

lo
g1

0(
Lo

ss
)

0.38

0.88

1.38

1.88

2.37

lo
g1

0(
Lo

ss
)

0.35

0.83

1.31

1.80

2.28

lo
g1

0(
Lo

ss
)

0.31

0.78

1.25

1.72

2.19

lo
g1

0(
Lo

ss
)

0.27

0.73

1.19

1.64

2.10

lo
g1

0(
Lo

ss
)

0.24

0.68

1.12

1.56

2.01

lo
g1

0(
Lo

ss
)

0.20

0.63

1.06

1.49

1.91

lo
g1

0(
Lo

ss
)

0.17

0.58

0.99

1.40

1.82

lo
g1

0(
Lo

ss
)

Figure 21 | The contours predicted by Equation (22) and the optimal allocations.

30

Training Optimal Large Diffusion Language Models

101 102 103

Epochs

4.0

4.5

5.0

Va
lid

at
io

n
Lo

ss

N=1.4B, U=139M

101 102 103

Epochs
4

5

6

7
Va

lid
at

io
n

Lo
ss

N=2.8B, U=49M

101 102 103

Epochs

4.0

4.5

5.0

5.5

Va
lid

at
io

n
Lo

ss

N=251M, U=82M

101 102 103

Epochs

4.0

4.5

5.0

5.5

6.0

Va
lid

at
io

n
Lo

ss

N=1.4B, U=82M

101 102 103

Epochs

4.0

4.5

5.0

5.5

Va
lid

at
io

n
Lo

ss

N=81M, U=49M

101 102 103

Epochs

4.5

5.0

5.5

6.0

Va
lid

at
io

n
Lo

ss

N=65M, U=29M

102 103

Epochs

5.0

5.5

6.0

6.5

Va
lid

at
io

n
Lo

ss

N=145M, U=10M

101 102 103

Epochs

5

6

7

8

Va
lid

at
io

n
Lo

ss

N=2.8B, U=29M

101 102 103

Epochs
4

5

6

7

Va
lid

at
io

n
Lo

ss

N=1.7B, U=49M

Actual Loss Predicted Loss Predicted Min Epochs

Figure 22 | The contours predicted by Equation (22) v.s. the real data points.

31

Training Optimal Large Diffusion Language Models

1 10 100 10001M

10M

100M

1.0B

10.0B

M
od

el
 P

ar
am

et
er

s (
N)

 41.6M

 803

 145.0M

 171

10M Unique Tokens (UD)

1 10 100 10001M

10M

100M

1.0B

10.0B

 68.0M

 853

 145.0M

 151

17M Unique Tokens (UD)

1 10 100 10001M

10M

100M

1.0B

10.0B

 114.9M

 853

 217.0M

 131

29M Unique Tokens (UD)

1 10 100 1000
Epochs (e)

1M

10M

100M

1.0B

10.0B

M
od

el
 P

ar
am

et
er

s (
N)

 193.9M

 853

 217.0M

 157

49M Unique Tokens (UD)

1 10 100 1000
Epochs (e)

1M

10M

100M

1.0B

10.0B

 317.4M

 887

 166.0M

 404

82M Unique Tokens (UD)

1 10 100 1000
Epochs (e)

1M

10M

100M

1.0B

10.0B

 519.7M

 937

 417.0M

 465

139M Unique Tokens (UD)
0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

lo
g1

0(
Va

lid
at

io
n

Lo
ss

)

Figure 23 | The validation losses predicted by Equation (22) v.s. the real validation losses.

32

Training Optimal Large Diffusion Language Models

Table 6 | The model arch details for all models trained in this work. All models used archs described
in §A.

Parameters (million) d_model ffw_size kv_size n_heads n_layers

1 128 512 32 4 3
2 224 896 32 7 4
5 288 1,152 32 7 5
7 320 1,280 32 10 6
14 448 1,792 32 7 6
25 512 2,048 64 8 8
36 576 2,304 64 9 9
49 640 2,560 64 10 10
64 640 2,560 64 10 13
79 640 2,560 64 10 16
85 768 3,072 64 12 12
106 768 3,072 64 12 15
127 768 3,072 64 12 18
135 896 3,584 64 14 14
154 896 3,584 64 14 16
173 896 3,584 64 14 18
201 1,024 4,096 64 16 16
226 1,024 4,096 64 16 18
252 1,024 4,096 64 16 20
354 1,280 5,120 128 10 18
413 1,280 5,120 128 10 21
428 1,408 5,632 128 11 18
472 1,280 5,120 128 10 24
500 1,408 5,632 128 11 21
538 1,536 6,144 128 12 19
571 1,408 5,632 128 11 24
623 1,536 6,144 128 12 22
708 1,536 6,144 128 12 25
771 1,792 7,168 128 14 20
886 1,792 7,168 128 14 23
1,002 1,792 7,168 128 14 26
1,107 2,048 8,192 128 16 22
1,250 2,176 8,704 128 17 22
1,258 2,048 8,192 128 16 25
1,409 2,048 8,192 128 16 28
1,420 2,176 8,704 128 17 25
1,529 2,304 9,216 128 18 24
1,591 2,176 8,704 128 17 28
1,784 2,304 9,216 128 18 28
2,038 2,304 9,216 128 18 32
2,045 2,560 10,240 128 20 26
2,359 2,560 10,240 128 20 30
2,674 2,560 10,240 128 20 34
3,121 2,688 10,752 128 21 36
3,426 2,816 11,264 128 22 36
3,744 2,944 11,776 128 23 36
4,077 3,072 12,288 128 24 36
6,166 3,584 14,336 128 28 40
8,456 4,096 16,384 128 32 42
10,682 4,352 17,408 128 32 47
11,211 4,608 18,432 128 36 44
11,976 4,608 18,432 128 32 47
13,343 4,864 19,456 128 32 47
14,653 4,992 19,968 128 32 49
14,785 5,120 20,480 128 40 47

33

	Introduction
	Preliminaries
	Chinchilla Scaling Law and Its Data-Constrained Version for AR Models
	Masked Diffusion Language Models

	Compute-Constrained Scaling Law for Diffusion Language Models
	Approach 1: IsoFLOPs Profiles
	Approach 2: Fitting a Parametric Loss Function
	Optimal Model Scaling

	Data-Constrained Scaling Law for Diffusion Language Models
	An Effort in Modeling the Validation Loss with Overfitting
	Optimal Model Scaling

	Key Modeling and Optimization Choices
	Masked vs. Uniform Transition Kernel
	Diffusion Schedules
	Diffusion Loss Formula
	Batch Size and Learning Rate Transferability
	Weight decay

	Related Work
	Scaling Laws
	Diffusion language models

	Discussions
	Implementation Details
	Alternative Data-Constrained Formulas and Fitting Results
	Additive Overfitting Term v1
	Additive Overfitting Term v2

